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1. I N T R O D U C T I O N :  THE M U L T I F R A C T A L  F O R M A L I S M  

Let # be a Borel probability measure on [0, 1]. Suppose that, for every 
q ~ ~, the following quantity exists: 

J+l[) l  q 
Ji m  l~ " No 

where N. is an increasing sequence of integers and the prime means that 
the summation runs through those indices j such that 

U~ L/# o 

On the other hand, consider the set 

log #(In(t)) ~ ~} 
E~= tEE0,1E; loglln(t) t 

where c~e 1~ and I. (t) is the interval [j/N., (j+ 1)/Nn[ which contains t. 
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Then it is asserted, c9 n )  and proved in certain cases, O'2"5'7't3) that 

dim E~ =fOx) := infq~ R ( a q  - r ( q ) )  

where dim stands for a suitable notion of dimension. In the case where 
= r'(q), then dim E~ = ~q - z(q). 

We are grateful to the referee for suggesting that we include a heuristic 
argument along the following lines. 

For  a pure fractal we would have p(Ii) ~- I L l "  and Y ILl  ~ - -  1, for some 
fixed ~ which gives the dimension. For  a multifractal, we have the local 
formal ism,  i A ( I i )  = Ilil "', which gives Y IL-I ~'q--"c(q) ~ 1. 

Now fix arbitrary ~ and minimize the function q-> e q -  r(q). Suppose 
the minimum occurs at qo. We have 

II~l f(=) + ~ II~1 ~<'q~162176 - -  1 

In the case where the contribution from the second term is relatively 
negligible (this can be investigated technically using large deviations) we 
have the formalism ~2~,-~ II/[ f(~)= 1, which demonstrates that the dimen- 
sion of the set E~ is calculated by the formula f(~) .  

Our aim is twofold: first, to examine what can be said in general, 
without making restrictive assumptions on/~; second, to define a setting in 
which the multifractal formalism works. The remainder of this article is 
organized as follows. 

In Section 2 we establish some large-deviation results. In Section 3, we 
show that, in general, instead of the equality, an inequality holds. In 
Section 4, we define a class of measures for which the formalism is valid. 
These measures have already been consisdered by one of the authors ~19) 
and contain as a particular case the multinomial measures, described in 
Section 5, and other measures occurring in certain dynamical systems, such 
as "cookie cutters." In Section 5 we give some examples and applications. 

Our methods do not appear to extend naturally to discuss further 
interpretations of f ( e )  as in refs. 14-18. The use of partition functions for 
computing Hausdorff dimensions also appeared in refs. 12 and 20. 

2. C H E R N O F F - T Y P E  R E S U L T S  

Let (f2n, d , , # n  ) be a sequence of probability spaces ,  {~'n}n)l a 
sequence of positive numbers, and {u,} and {vn} two sequences of random 
variables with values in [0, 1 ], #,  and v, being tin-measurable. 
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and 

Let Xn be the set Xn = { un vn # 0 }. For real numbers x and y, set 

Cn(x, y) = 22 ~ log f u~v S d#, Jx, 

C(x, y) = lira sup C~(x, y) 

It is well known that Cn and C are convex functions. Consider the 
set g ? = { ( x , y ) e ~ 2 ;  C(x,y)<O} and its interior (}. Since C(x,y) is 
nonincreasing as a function of x and nondecreasing as a function of y, the 
set ~2, if it contains a point (a, b), also contains the whole quadrant 
{ ( a + x ,  b - y ) ;  x>~0 and y~>0}. It results that there exists a concave and 
nondecreasing function ~o from N to N such that 

~ =  {(x, y)E ~2; y < (p(x-- 0)} 

If f2=  ~ ,  then <p is identically equal to - o o ;  if f2=  ~2 then ~0 is 
identically equal to + ~ ;  if ~ is the half-plane {(x, y); X>Xo}, then 
~o(x) = - o o  for X<Xo and q~(x)= +oo for X>Xo. 

From now on, we assume that ~0 is finite on an open interval I 
containing 0. 

For  any ? e ~, we consider the following Legendre transform of q): 

f~(e) = inf [e(x  - 7) - (p(x)] =)Co(a ) - e 7 
X ~  

For 7 s / ,  the maximum value of f~(e) is - 0 ( 7 )  and is assumed for 
e e [cp'(? + 0), qr - 0)]. The function f~ is nondecreasing on the interval 
] - o% (P'(7 + 0)],  and nonincreasing on the interval [qr - 0), + oo [. The 
two following remarks will be useful: 

1. If e , .<qr  and g>f~(~),  then there exists t > 0  such that 
C(? + t, - 5  + at) < 0, 

2. If e>~cp'(7+0) and 5>f7(c0,  then there exists t > 0  such that 
C(7 -- t, - 5  - et) < 0. 

The following results can be thought as being a generalized form of 
Chernoff inequality.(6) 

Proposition 1. For  any 7 e L  we have the following facts: 

1. Ife. . .<~0'(7-0 ) and 5>fT(e) ,  then 

[  dm<O lim sup log u,, v~ 
~n Jx~ {.,,>~ ~} 
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. If a ~> q)'(7 + 0) and 6 >f~(a) ,  then 

1 
lim sup ~ log ix~ {..<~ <) a d/~. < 0  H nlA n 

Proof. First, suppose  we have a--.<q~'(7-O) and 6 > f ~ ( a ) .  Choose  
t > 0 such that  C(7 + t, - 6 + at) < O. Then  

Un~) n ~ Idn~) n 1) n 

x .  

= exp )~C~(7 + t, - 6  + at) 

which proves  assert ion 1. 
Suppose  now we have a > c p ' ( 7 + 0 )  and 6 > f r ( a ) .  Choose  t > 0  such 

that  C(7 - t, - 6 - at)  < 0. Then  

U nV n ~ Unl)  n V n 

~ f --nliy-tl)b+O~t 
x .  

= exp 2~ C,(7 - t, - &  - at) 

which proves  assert ion 2. 
We can also r emark  that,  if & > -9)(7) ,  we have 

1 ~ 
lira sup 5- log o u,v~ a d # n < 0  

n ~ c o  'on Xn 

Proposit ion 2. 

1. If a < (P'(Y + 0), then 

lim,~oosup 12, log fx. 

2. If a > ~0 ' (7-  0), then 

lira sup 1 log f u~j  -~o(~) d#,  < 0 

Proof. Under  the hypothesis  of  assert ions 1 and 
-~P(7) > fT (a )  �9 So, we can use Propos i t ion  1. 

For  any 7 e / ,  we have the following facts: 

v.  -~r dt~. < 0 U n 

2, we have 
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C o r o l l a r y .  Suppose  we have # = / t ~  for every n, ~0(0)=0,  
Z .  ~ ~ exp - ~/2~ < ov for any t />  0. We then have 

log u. log u. _< 
~0' (0 + ) ~< lira inf ~< lira sup - -  ~ q~'(0 - ) 

~ l o g v ~  ~ o ~  l o g v ~  

~t-almost everywhere on the set lim inf, ~ ~ X~. 

Proof. By Propos i t ion  2, if c~ < ~o'(0 + ), we have 

# X,  c~ ( l o g  v, ' 
n ~ > l  

So, 

log u n 
lim inf /> c~, 

~ o~ log v n 

Similarly, if c~ > cp'(0- ), then 

log un 
lira sup - -  <~ c~, 

~ +~ log v n 

/ , -almost everywhere on 

#-a lmost  everywhere on 

lim inf Xn 
n ~  + o o  

lira inf X~ 
n ~  + o O  

779 

and 

3. UPPER B O U N D S  FOR D I M E N S I O N S  

Let {{/,,,j}l~j.<vn}n~l be a sequence of part i t ions of  the interval 
[0, 1 [, each I . , j  being an interval,  semiopen to the right. In the present  
section, these par t i t ions  need not  be nested. If  t e [0, 1 [, I.(t) stands for 
that  interval a m o n g  {In, j}1 ~ j ~ .  that  contains t. The length of an interval 
J is denoted by [J[. We assume that,  for any t e [0, 1[, we have 
lim~_~ ~ rI~(t)l = 0. 

We consider two dimensional  indices dim and Dim which are defined 
in a similar way to Hausdor f f  and Tricot  dimensions,  but  by considering 
only coverings or  packings by intervals {I~,j}.~>~,~j~v.- The  Hausdor f f  
d imension is well known.  The  Tr icot  one is less known,  so we give a survey 
of its definition and propert ies  in the Appendix.  We think that  the Tricot  
d imension is of great interest. Indeed, this d imension is one of those that  
gives a mathemat ica l  meaning  to assert ions of some physicists on the "box 
dimension"  of certain sets which are dense in an open set of  some R d. 

Let # be a Borel probabi l i ty  measure  on [0, 1[. Fo r  c~e ~, let us 
consider the following sets: 



780 B rown  e t  al.  

B~ = {t 

B*={t 

V~ = {t 

v*  = {t  

1 [; lim sup log #(I,(t)) _< c~'~ [0, 6 
log II.(t)l "~ ] 

�9 _ l o g  tz(I.(t)) "[ 
e [0, 1 [; lira lnI ~ 

log II,(t)l 
. . . .  log ~(z~ ] 

e s u p p # ; n m m l  7---,--:-7=,,, > ~  
log {1.(t)[ J 

,. log #(In(t)) >. ] 
e supp #; um sup l ~ g ~  ~" e?  

) 

and 

E~,~= V~c~ Ba (for c(~<fl) 

We are given a sequence {2,},~>~ of positive numbers such that 
~2n >/ 1 exp -- q2. < oo for any rt > 0. 

We consider the following quantities: 

and 

C.(x,y)=2211og ~' l~(In,j)x+llln,j[ Y 
l <~j<.  v n 

C(x, y)=limsup C,(x, y) 
n ~  

where ~2' means that the summation runs over the j ' s  such that / l ( I , . j )  # 0. 
These quantities are the same as those introduced in Section 2: take 

/ 1 , = #  (for every n>~ 1), Un(t)=l~(I,(t)), and v , ( t )=  [I,(t)l. As previously, 
we consider the function ~o and the various objects attached to it. We 
suppose that ~o is finite on an open interval containing 0 and 1. But, 
instead of writing f - l ,  we shall simply write f. 

When all the intervals {I,,j}l~<j~v~ have the same length exp -)~, ,  we 
have the following relation between our function q~ and the function 
described in Section 1: q~(x) = ~(x + 1). 

The  following theorem provides upper bounds for the Hausdorff and 
Tricot dimensions of the sets B~, B*, V~, and V*. 

T h e o r e m  1 .  

1. For  any ~, we have Dim B* ~< - r p ( -  1) and Dim V* ~< - q ) ( -  1). 

2. If c~ ~< q ~ ' ( - 1 - 0 ) ,  then Dim B~ ~<f(c 0 and dim B* <~f(~). 

3. If ~ >~ ~0'(~ 1 + 0), then Dim V~ ~ f ( ~ )  and dim V* ~<f(c 0. 
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Proof. Assertionl. If 6 > - ~ o ( - 1 ) ,  it results from the remark 
following Proposition 1, Section 2, that 52,>~ ~ ~ j  II,,j[ a < oo. Let X denote 
the set lira inf ,_ ~ X~ (see Section 2). This set differs from the support of 
# only by a countable set, and contains B*. If {lj}j~>~ is any packing 
of X by intervals in the family {I,,,j},,i, we have ~ I/]] ~< o% so Dim X <  6. 
We therefore have Dim J(~< -~0( - 1). 

Assertion 2. It is enough to consider the case ~ < ( p ' ( - 1 -  0). Set 

B~(n) = {re [0, 1[; t~(I.(t)) ) II.(t)[ ~ } 

We have 

and 

U (3 B;n) 
a < : f l < c p ' ( - - 1 - - O )  m~>l n > ~ m  

0 N U B (n) 
~t<f l<cp ' ( - -1 - -O)  m~>l n > ~ m  

Let us fix f ie  ]a, ~o'(-1 - 0 ) [  and consider the family J of those I,, s 
such that/~(/,,,j) >~ IIn.jJ ~. By Proposition 1, Section 2, if 6 >f ( f l ) ,  we have 

I E J  

Since any packing {/j.}j of O.~mBe(n)  such that [Ijl<min{lI.,k[; 
n<m,  1 <.Gk<v.} is extracted from J ,  we have Dim On>~mBz(n)<~6 for 
any m and 6 >f( f l ) .  Therefore 

Dim(  
and 

Dim B~ ~< inf f ( f l )  = f ( ~ )  
~ <  fl < q ~ ' ( - 1 - O )  

On the other hand, the family {Ie  J ;  II1 < e} covers 0.,~> 1 U.~>,. B~(n) 
for any e > 0. Therefore, 

and 

dim ('-] U Bl~(n)<<-f(fl) 
m > ~ l  n > ~ m  

dim B* ~< inf f ( f l )  = f ( a )  
=t < f l < ~ ' ( - - 1  O) 
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Assertion 3. 

We have 

Brown et aL 

It is enough to consider the case ~ > q ) ' ( - 1 -  0). Set 

V~(n) = { t ~ X;  ~(In(t) ) <<. II.(t)l ~ } 

f3 U F) V,(n) 
q/(--1 0)<,//<c~ m~>l n ) m  

v:=  (3 N U V (n) 
~o'(--1 0)<fi '<~ m>~l n>~m 

Let us fix fl ~ ]q)'( - 1 - 0), e[ and consider the family J of those I.,j 
such that 0 < # ( I . , j ) < l I . , j l  ~. By Proposition 1, Section2, if b > f ( f i ) ,  we 
have ~z~o. Ill e<  oo. And we conclude as for assertion 2. 

4. L O W E R  B O U N D S  FOR D I M E N S I O N S  

In this section, we furthermore assume that the set of intervals {In,j},,,j 
considered in Section 3 is endowed with the structure of a homogeneous 
tree: any In, j contains q intervals In+ 1.k, and any In+ 1,k is contained in one 
In, j. In these conditions, we can label the In,j, for 1 <. j~qn ,  in the 
following way: I~1 ' ~2 ........ with 0 ~ ~j < q. 

We introduce the following notation: for nonnegative functions u and 
v, u..~v means that there exists a positive constant A such that 
A-lu<~ v ~  Au. 

We still are given a probability measure g on the Borel sets in [0, 1[, 
and throughout this section we make the following assumptions: 

HI J[~(/s ........ t/l,-",t/n) ~ '  # ( Ie l  ....... ) ]2(It/l,"-,~/n) 

H2 [L~ ........ ,l,.,n.I ~ ILl ....... I IInl,.,..I 

H 3 lim s u p l l o g  ( sup II.,il) <0 
n \l<~j<~qn 

(or course the constants A1 and A2, implicit in H1 and H2, are 
independent of the indices involved). 

In this section, we take 2n = n, Then a subaddivity argument shows 
that hypotheses H~ and H 2 imply that 

C.(x,  y ) =  1-log Z '  #(I..j) ~+1 II~jI-Y 
n J 

has a finite limit C(x, y)  for any (x, y) e N2. 
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We have C(0, 0 ) = 0  and C ( - 1 , -  1)~<0. So, the corresponding r 
does not assume the value + or. Moreover, it results from H 3 that t-2 is not 
empty. 

On the other hand, Michon (19) proved that, for any (xo, yo)s  ~2 
there exists a probability measure #~0,yo on [0, 1[ with the following 
property: 

#*o, yo(I,,J) ~ #(i.,j)xo+ l li.,jl y0 e .C(~o, y0) 

This measure, called the Gibbs measure, also satisfies HI. So, we can 
consider the following quantity: 

Cxo.yo(X, y ) =  lira -1 l o g ~ '  #(I.,j) ~ II.,jl-* #~o, yo(I..j) 
J 

Indeed we have 

Cxo, yo(x, Y) = l i r a  1 log f #(/,,(t)) x I/~(t)l-Y ap~o ' yo(t) 
n {#(In(t))>O} 

It results from a straightforward computation that 

Cxo,~o(X, y)= C(x + Xo, y +  y o ) - C ( x o ,  yo) 

T h e o r e m  2. For any real number 0, we have 

, >_ f f ( q / ( O  + 0 ) )  i f  0 I> - 1 

dim(Vr176176176176176 if 0 ~ < - 1  

Proof, Set #0=#0,r and Co=Co,~(o). We then have Co(x, y ) =  
C(x+O,  y+~o(O)). So, the function ~P0 the graph of which separates 
positive and negative values of Co is the function COo(X) = ~o(x + O) - r 
It results from the corollary to Proposition 2, Section 2, that, for #0-almost 
every t, we have 

�9 o l o g  # ( I . ( t ) )  _< .. log #(I . ( t ) )  _< " 0  
cp'(0 + 0) ~< lim lm -.~ um sup - - - -  -.~ q~ t - 0) 

log II.(t)l log II.(t)l 

In other terms, this means 

#o(Vr c~ Br = 1 

On the other hand, we have 

log #o(I.(t))  (0 + ' "  log #(I , ( t ) )  
log IIAt)l - t~ l - ~ g ~  r 

822/66/'3-4 7 



784 Brown et aL 

So, for 0 ~  - 1 ,  and for #0-almost every t, we have 

lira inf l~ #~ >~ (0 + 1) (p'(0 + 0) - (p(0) = f(~o'(0 + 0)) 
log II,(t)l 

Similarly, if 0 ~< - 1 ,  then, for #o-almost every t, we have 

�9 . logpo(In( t))  .~ 
lira mt ;--.--7-z-~.., ~> (0 + 1 ~p'(0 - 0) - (o(0) =f ( (o ' (0  - 0)) 

Log II,(t)l 

We conclude by using the Kinney-Pitcher-Billingsley theorem. (4) 

Remark. In fact, we proved a bit more: if A is a Borel set such that 
I~o(A ) > 0, then we have dim A >/min(f (q / (0  - 0)), f(q~'(O + 0))). 

As a matter of fact, the above analysis has the following by-product: 
the existence of #0 for all O's implies that f cannot assume negative values. 
This means that ~0 is defined on the whole of ~ and that its graph has two 
asymptotes. 

In order to summarize these results, it is convenient to introduce 
the following notations: c~ = q ; ( -  1 - 0), ~o = r 1 + 0), and, if 
~E[q~'(O+O), q ; (O-O) ] ,  we set ~ + = q ; ( O - O )  and c~-=~0'(O+O). By 
putting together lower and upper bounds, we obtain the follows results. 

T h e o r e m  3. 

1. in f [ f (a  ), f (~  +)] ~< dim E=-,~+ ~< Dim E~-,=+ ~< s u p [ f ( ~ - ) ,  f (~  +)]. 

2. If ~ ~< ~ - ,  then we have 

dim V= = Dim V* = -~0( - 1) 

dim B=- = Dim B=- = dim B* = f ( ~ -  ) 

3. If ~ >~ ~o, then we have 

dim B~ = Dim B* = -q~( - 1 ) 

dim V=+ = Dim V=+ = dim V=* = f ( ~ +  ) 

Proof. Assertion 1 follows easily by combining Theorems 3.1 and 4.1. 
Let us consider the case ~ < ~ .  We have, by Theorem 3.1, 
dim B *-~ <f ( ~ - )  and Dim B=-~<f(~-) .  On the other hand, if f l < ~  , 
we have B* ~B= ~ E ~  ,~+, so d imEs  >~f(fi ). But l i m ~ . , ~ _ f l - = a  ; 
therefore 

dimB*-~>dimB~->~ sup f ( f l - ) = f ( ~  ) 
fl<ct- 

This proves the second part of assertion 2. 
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Now, if ~ ~> ~- ,  then we have B* ~ B~ ~ B~ for all/~ ~< c%, so 

dim B~ >/ sup dim B~- = sup f ( /~ - )  = f ( c % )  = - q ~ ( -  1) 
3 < % -  /~ <%-  

This proves the first part of assertion 3. The other assertions are proved 
similarly. 

C o r o l l a r y  1.  Set 

E ~ = { t e  [0, 1[-; lim 
n~.oo 

log #( I.( t ) ) } 
log [I.(t)l 

We then have dim E=- = D i m  E~ =f(c~-)  or dim E=+ = D i m  E~+ =f(c~ +) 
according to whether ~ ~< ~o or c~ ~> c~. 

C o r o l l a r y  2. Set 

,. log #(I,(t)) ) 
B== t e l 0 ,  1] ;J lmsup - - - -  = ~  

, _ ~  log ]I,(t)[ f 

We have d i m B ~ - = D i m B ~ - = f ( ~  ) or dimBa+=f(c~ +) according to 
whether ~ ~< ~o or c~ ~> ~ .  

This results from Theorem 2 and from the fact that B~ = B~ c~ V*. We 
also have a result of the same kind for the set ~'~ of t's for which the lower 
limit Js ~. 

This last corollary generalizes a result of Collet et al. (7~ 

5. EXAMPLES 

1. An Example Where dim E~ 4= f ( ct) for Some 
{ 1,1 ....... }. ~> 1,0 ~< ej ~< 4 be the collection of 5-adic intervals: 

L~ ....... = ~s 5 -J, ~s 5 - j  + 5 - "  
j 1 j = l  

For any number t ~ [0, 1 [, we consider its base-5 expansion 

t= ~. ej5 -j, 0~<ej<5 
j>_.l 

(multiple expansions are too scarce to matter), and set 

1 
~pj(t ,n)=-card{k<.n;e~=j} for 0 < j < 5  

n 

a. Let 
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We define a measure/z in the following way. It is the average of two 
probabilities, one of which is supported by the first fifth of the unit interval 
and the second by the last fifth. The first of these mass distributions sees 
only the digits 0, 2, 4 of the base-5 expansion and treats them equally; the 
second sees only the digits 1, 3 and treats them equally. So, the measure # 
is supported by the union of two Cantor-like sets, and for t's in its support 
we have 

i if 1~<e1~<3 
#(I.(t)) = -13 n(~~176176 if I~1 -~- 0 

--1--n(Vl(t'n)-t-q~3(t'n)) if el = 4  

It is easy to see that 

/ log 2 log 3'~ 
rain Cx,- g 5, 

so one has f (~)  = ~ for log 2/log 5 ~< ~ ~< log 3/log 5. But E~ = ~ unless 
= log 2/log 5 or ~ = log 3/log 5. 

2. The M u l t i n o m i a l  Measures .  Let b be an integer ~>2 and {I~ ....... } 
stand for the b-adic intervals: 0 ~< q <  b, IL~ ....... ] =  b -". We define q~j(t, n) 
(t e [0, 1[, 0 ~<j < b) as in the preceding paragraph. 

Let m = {mj}o~j<b be a sequence of b nonnegative real numbers such 
that 

r n j = l  
O~j<b  

Then, we define a measure /~m in the following way: 

logp,~(I,,(t)) = n ~ ~oj(t, n) log mj 
O<~j<b 

These measures have been used as a paradigm for multifractal measures. (12) 
For them, it has been proved (12) that the multifractal formalism works. As 
they satisfy hypothesis H1 of Section 4, they can be handled by our 
method. In fact all computations are explicit: v ( q ) = - l o g ( Z ; ~ j < b m q ) ,  
where log is the base b logarithm. The Gibbs measures are also multi- 
nomial measures. 

In the case b = 2, the sets E~, J~, and V* have been considered by 
Eggleston, (8) Besicovitch, (3) and Volkman, (24) respectively, and they deter- 
mined their dimensions. So our results can be considered as a generaliza- 
tion of theirs, although the methods are different. 
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3. Besicovitch- and Vo/kman-Type Results for Base3, We have 
a l ready defined ~Oo(t, n), opt(t, n), and ~o3(t, n). Let  us consider the set 

G~,# = {t e [0, 1 [; l ira sup (po(t, n) ~< c~ and lira sup ~ol(t, n) ~< fl} 

Let us set 

h ( u ,  v, w )  = - u  log u - v log v - w log w (base 3 logar i thms)  

We are going to prove  that  

' 1  

h(~, #, 1 - ~ -  #) 
( 1-c~ 1-~) d i m G ~ , ~ =  h e, ~ , ~- 

1 1 
if c~>~ and ~ > ~  

if 2c~ +/~ ~< 1 and c~ + 2/3 ~< 1 

1 
if c~+2fl>~ 1 and e~<~ 

1 
if 2e+f i~>  1 a n d f l E ~  

Clearly, if cr and /3 are greater  than 1/3, G~,# contains the numbers  
which are no rma l  in base 3. So, dim G=,e = 1. 

Let  us suppose that  2c~+fl~<l and cr and consider the 
mul t inomia l  measure  # = #~=,~,1-z-e). Set d =  h(cr fl, 1 - ~ - fl). 

Since, for a lmost  every t, q%(t, n) and ~ol(t, n) converge toward  cr 
and fi, respectively, we have #(G~,#)= 1, and, therefore (by the remark  
following Theorem 4.1 ), dim G=,# > d. 

On the other  hand,  we have 

1 l - e - / ?  1 - c r  
- - log # ( I ~ ( t ) )  = ~Oo(t, n )  log + qh(t, n) log 

n ~ 

- l o g ( 1  - -  ~ - f l )  

But bo th  numbers  ( 1 - c ~ - f l ) / c ~  and ( l - e - f l ) / f l  are larger than  1, so, if 
t e  G~,#, we have 

. log # ( I , ( t ) )  _ 1 1 - c~ - f l  
lm sup - - - - -  ~ ~ log - c~ - / ~  +/~ log - -  - log(1 - cr - / ? )  
. ~ o  log II~(t)[  ~ fl 

4h (~ ,  #, 1 - ~ - # )  

So G~,# c B d. But f ( d )  = d, so D i m  G~,# ~< d. 
In the other  cases, the p roof  is similar, but  this t ime we use for # o n e  

of the measures  

#cq (1 -- ~)/2, (1 -- c~)/2 o r  # (1 -- ,8)/2,/5', (1 --/~)/2 
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4. 7"he Cookie-Cutter. The final example which we would like to 
use to illustrate the previous results is the "cookie-cutter" introduced and 
elucidated by Bohr and Rand. (s) In that case the map ~0 is well-behaved 
and gives detailed information about dim E~ as a function of ~. 

In fact one considers a smooth expanding map F, defined on two sub- 
intervals I o and I, of the unit interval L so that F(Io)-=F(I,)=I and 
denotes by Fo and F~ the respective inverse branches. 

Define the intervals /~ ....... = F ~ o  . . . .  F~(I) and consider the 
Cantorlike set n .  U~, . . . . . . .  I e l  . . . . . . .  provided with the measure of maximum 
entropy #: p(/~ ....... )=  2 - ' .  Then 

2-n(x+ i) 

-'log  - - 7  C. (x ,  y ) = n  51 ....... IL~ ....... I 

As n goes to infinity, Cn(x,y) converges to C ( x , y ) = - ( x + l ) +  
log2 p(Ly), where p(Ly) is the spectral radius of the positive transfer 
operator 

Ly(h)(s) = ~ h(Fi(s)) 
o,1 IDFi(s)l y 

Since this operator has a simple eigenvalue at the spectral radius, it 
results that this spectral radius is smooth as a function of y and is in 
fact invertible. In this case the function q~, defined by the equality 
C(x, ~0(x)) = 0, it itself smooth and the previous theorems give the value of 
dim E~. 

A P P E N D I X .  T H E  T R I C O T  D I M E N S I O N  

Let E be a subset of a metric space (X, d). An e-packing of E is a 
collection {B,} of mutually disjoint closed balls of diameter less than 
which intersect E. If e is a positive number, we consider the following 
quantity: 

p~(E) = ~olim inf { ~  B. IB. being an ~-packing of E} 

Define 

A(E) = inf{~ [ p=(E) = O} 

In the case X =  R, A(E) is nothing but the so-called "box dimension" of E. 
The point, with this notion of dimension, is that it does not distinguish a 
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set and its closure. For  instance, the box d imens ion  of the ra t ional  numbers  

is 1, a l though this set is countable.  

In  order to obviate this difficulty, C. Tricot  set the following definition: 

D i m ( E ) =  inf {sup  A ( E n ) l E c  U En } 

This new index has the same stability properties as the Hausdorff  

d imension:  A c B implies Dim A ~<Dim B, and  if E is the un i on  of a 

countable  sequence {E,},  we have Dim E =  sup Dim E, .  
O n  the other hand,  we always have dim ~ A (where dim stands for the 

Hausdorff  dimension).  It results that  we have dim ~< Dim. 
For  a complete t rea tment  of these indices see refs. 21-23, and  ref. 20 

for a related not ion.  
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